Experimental method measures quantum coherence
Researchers at the UAB have come up with a method that allows measuring the strength of the coherence of a quantum state in superposition, similar to Schrödinger's cat. The method is based on the measurement of experimental parameters related to the visibility of interference fringes pattern produced when the two states are superimposed.
Researchers from the UAB Department of Physics and the Indian Institute of Science, Education and Research Kolkata propose a new way of measuring the robustness of the quantum coherence of a superimposed state. The method is based on the measurement of the visibility of interference fringes, a figure formed by alternate dark and intense stripes similar to that of a zebra, produced when two coherent states coincide.
According to UAB researcher Andreas Winter, “The existence of quantum superpositions is at the heart of the non-classical nature of quantum physics. It manifests itself by producing interference patterns in interferometric experiments. We show that each visibility parameter of the interference pattern , such as the difference between maximums and minimums in intensity, gives rise to a measure of coherence." “The study thus connects the recently burgeoning, but hitherto rather abstract resource theory of coherence, to concrete and physically relevant observations.”
The scientists, experts in information quantum theory, study the intrinsic properties of quantum mechanics such as entanglement, uncertainty, superposition, indeterminism and interference, to be used as resources in a quantum processing of information, the foundation of future quantum computers.
The study was conducted by researchers from the Quantum Information Group at the UAB Department of Physics Andreas Winter (ICREA researcher) and María García Díaz, together with researcher Tanmoy Biswas from the Indian Institute of Science, Education and Research Kolkata.
Original article:
Tanmoy Biswas, María García Díaz, Andreas Winter. Interferometric visibility and coherence. Proceedings of the Royal Society A. July 2017 Volume 473, issue 2203. DOI: 10.1098/rspa.2017.0170
http://rspa.royalsocietypublishing.org/content/473/2203/20170170