Nueva aleación de magnesio para aplicaciones biomédicas
En la actualidad existen diferentes materiales metálicos para aplicaciones biomédicas tales como aceros, aleaciones de titanio, etc. Estas aleaciones se pueden utilizar, por ejemplo, como implantes pues permiten soportar altas cargas y no presentan una deformación excesiva ni tampoco cambios dimensionales permanentes. A pesar de su frecuente utilización, estas aleaciones presentan una rigidez superior a la del hueso humano por lo que el hueso puede sufrir reabsorción, muerte celular así como que el implante se pueda aflojar. El problema de absorción del hueso (pérdida de masa) es similar al que sufren los astronautas en el espacio. Esta pérdida sucede debido a que la falta de gravedad impide que el hueso cumpla su función de soportar el peso del cuerpo.
Esta limitación se puede superar utilizando aleaciones de magnesio ya que presentan poca rigidez. Es más, las aleaciones de magnesio presentan buena biocompatibilidad y son biodegradables (materiales no tóxicos que son reabsorvidos por el cuerpo humano después de un cierto tiempo), lo cuál es una gran ventaja pues evita la necesidad de sacar el implante del cuerpo una vez que paciente se ha recuperado. Sin embargo, el problema de algunas aleaciones de magnesio es la alta velocidad de corrosión que presentan en condiciones fisiológicas, lo cuál hace que estas aleaciones se degraden antes de que el hueso se pueda reparar. Por esta misma razón es importante disminuir la velocidad de degradación de las aleaciones de magnesio.
En nuestro trabajo se muestra cómo una manera adecuada y efectiva de retrasar el comienzo de la corrosión es aleando el magnesio con paladio tal y como evidencia el desplazamiento de los potenciales de corrosión a valores más positivos. La superficie corroida de esta muestra es también más lisa y presenta menor cantidad de oquedades. El paladio se ha utilizado durante muchos años como un elemento principal en aleaciones dentales debido a su alta resistencia a la corrosión y baja actividad tóxica. Así, controlando la concentración de paladio en la aleación, podemos controlar la velocidad de degradación de los implantes, haciendo que estos se degraden cuando el hueso esté recuperado.
La microestructura de la aleación de magnesio inicial, la cuál consiste en pequeños cristales dispersos en una matriz amorfa, cambia drásticamente cuando se añade una pequeña cantidad de paladio pues esta es suficiente para formar una microestructura totalmente cristalina (Figura). A partir de los estudios de nanoindentación hemos observado cómo la adición de este elemento aumenta la dureza de la aleación así como la resistencia al desgaste. La resistencia al desgaste es interesante ya que evita que se formen restos procedentes del desgaste que puedan ocasionar reacciones inflamatorias.
Los ensayos de citotoxicidad no muestran un aumento significativo en el número de células muertas tras ser cultivadas durante 27 horas, lo que confirma que esta aleación no es citotóxica y que por tanto se puede utilizar potencialmente como implantes biodegradables
Referencias
S. González, E. Pellicer, J. Fornell, A. Blanquer, L. Barrios, E. Ibañez, P. Solsona, S. Suriñach, M. D. Baró, C. Nogués, J. Sort. “Improved mechanical perfomance and delayed corrosion phenomena in biodegradable Mg-Zn-Ca alloys through Pd-alloying”. J. Mech. Behav. Biomed. Mater. 6 (2012) 53-62.