"

A novel, more efficient catalyst to obtain methanol from carbon dioxide

THE INVENTION

A biochar-supported CuZnO catalyst for the transformation of CO_2 to methanol through a hydrogenation reaction, providing a more efficient, sustainable and cost-effective alternative to the aluminum-supported industry standard.

Innovative aspects and advantages

- **More efficient**: methanol production (measured as space time yield) with our proposed catalyst was roughly 6.2 times higher than with the aluminum supported commercial alternative.
- **High stability and selectivity**: activity was almost completely maintained after more than 40 hours while selectivity remained high (81.8%), both surpassing the commercial alternative.
- A sustainable and inexpensive support: biochar is a biodegradable and cheaper alternative to aluminum and other metal oxide supports.
- **Potential further applications** for the obtention of other renewable fuels from CO₂ are being explored.

IP Rights

• Patent application EP24180709.8 with priority date 07/06/2024.

Summary

Carbon dioxide capture and storage (CCS) and its chemical transformation are crucial for mitigating CO₂ emissions from fossil fuels, addressing a major global concern. The transformation of carbon dioxide into methanol through hydrogenation has been of great interest, given its applications as a fuel and in the manufacture of industrial chemicals. However, this reaction requires very stringent conditions and there is a need for further catalysts showing improved yield and higher selectivity.

Researchers from UAB have developed a novel catalyst using biochar as a support, a charcoal obtained from the pyrolysis of biomass with porous nature that facilitates the dispersion of CuZnO nanoparticles, opening the door to a more efficient and costeffective obtention of renewable methanol.

Market

- Renewable methanol market was valued at USD 196.8 million (2022) and is expected to reach USD 390.14 million by 2031, growing at a CAGR of 7.9% in this period (Source: Skyquest).
- The CO₂ utilization market is estimated at USD 4.02 billion (2022) and is expected to reach USD 14.32 billion by 2032, growing at a CAGR of 13.60% (Source: Precedence Research).

We are looking for

A partner interested in a collaboration and license for commercial exploitation.

Scientific Team

Xavier Font Segura, Antoni Sánchez Ferrer, Antonio Javier Moral Vico and Seyed Alireza Vali, Biological and Environmental Engineering Department from Autonomous University of Barcelona.

Contact

Sandra Ramos- UAB Technology Transfer Office Sandra.Ramos@uab.cat